Safe Design Legislation Definitions

Safe Design Legislation – Some Definitions

Safe Design Legislation – Some Definitions

The following are definitions of key terms and aspects from Australia’s Safe Design Legislation, explaining the various parties and contributors as well as key elements in the WHS Act and legislation. Here we explain:

  • Design and Designer
  • Person Conducting a Business or Undertaking (PCBU)
  • Principal Contractor
  • Reasonably Practicable
  • Recognised Standards, and
  • Structure

Design and Designer

Under the WHS Act, ‘design’ in relation to plant, a substance or a structure includes:

  • design of part of the plant, substance or structure; and
  • redesign or modify a design.^

The Code of Practice: Safe Design of Structures defines a designer as a person conducting a business or undertaking whose profession involves them in, “preparing sketches, plans or drawings for a structure, including variations to a structure and making decisions for incorporation into a design that may affect the health or safety of persons who construct use or carry out other activities in relation to that structure.” *

Designers can include:

  • architects,
  • building designers,
  • landscape designers,
  • interior designers,
  • builders,
  • town planners,
  • engineers that design part of the structure (e.g. mechanical, structural, civil, electric, hydraulic),
  • services and plant designers and persons specifying how alteration or demolition work is carried out,
  • If a principal contractor or other person changes a design, they then take on the role of designer.

Person conducting a business or undertaking (PCBU)

Person conducting a business or undertaking (PCBU) is a term that is used throughout the WHS Act and Regulation in relation to the design of structures. A PCBU is a person who conducts a business or undertaking alone or with others that can operate for profit or not-for-profit.+ These include PCBUs:

  • who commission construction work (‘the client’),
  • PCBUs that commission plant or structures (‘the client’), and
  • PCBUs that design structures (‘the designer’).
  • The principal contractor is also a PCBU.

The definition of a PCBU focuses on the work arrangements and the relationships to carry out the work. PCBU’s can be:

  • A corporation,
  • An association,
  • A partnership, or
  • Sole trader.

Employers or volunteer organisations which employ any person to carry out work is considered a PCBU. Householders where there is an employment relationship between the householder and the worker are also considered a PCBU.

PCBUs can also include:

  • A person commissioning a design for a workplace, or
  • A person commissioning a structure for residential purposes, who is an owner builder, investor, developer, or is working from home or employing workers at home.

The Code of Practice: Construction Work says that a “person commissioning the design is not a PCBU if they are a home buyer, owner or occupier commissioning work on their home; or an individual undertaking maintenance, refurbishment or renovations of their own home or helping a friend”.

Regardless of whether a client is considered a PCBU or otherwise, the designers’ duties in relation to safe design under section 22 of the WHS Act still apply. This includes designers providing information to their clients and anyone issued with the design on any conditions necessary to ensure that the structure is designed to be without risk to health and safety when it is used as a workplace.

Designers conducting design businesses are also considered PCBUs and as such have duties in relation to the safety of their own workers when they are working for them either in or out of the office or on site.

Principal Contractor

A principal contractor is required for a construction project where the value of the construction work is $250,000 or more. The principal contractor is a person conducting a business or undertaking that:

  • commissions the construction project (the client); or
  • is engaged by the client to be the principal contractor and is authorised to have management or control of the workplace #

Reasonably practicable

The designer must ensure, so far as is ‘reasonably practicable’, that the structure is designed to be without risk to the health and safety of persons who manufacture or construct any component of the structure, who use the structure for the purpose for which it is designed or are involved in the maintenance or disposal of that structure.

The term ‘reasonably practicable’ is also used in relation to consultation with other duty holders and between designers and clients on how risks to health and safety during construction can be eliminated or minimised.

‘Reasonably practicable’ means that which is, or was at a particular time, reasonably able to be done to ensure health and safety, taking into account and weighing up all relevant matters including:

  1. The likelihood of the hazard or the risk concerned occurring;
  2. The degree of harm that might result from the hazard or the risk;
  3. What the person concerned knows, or ought reasonably to know, about the hazard or risk and ways of eliminating or minimising the risk (as a professional in the design field);
  4. The availability and suitability of ways to eliminate or minimise the risk; and
  5. After assessing the extent of the risk and the availability of ways of eliminating or minimising the risk, the cost associated, including whether the cost is grossly disproportionate to the risk.~

Recognised standards

‘Recognised standards’ include legislation, WHS codes of practice, Australian standards, building laws, the National Construction Code of Australia (NCCA) and industry guidance materials.

It is important to be aware of the currency and applicability of any standards and to assess the efficacy of the standard and research current injury data to determine whether a recognised standard is adequate to address the identified hazard. In some cases, designers may need to go beyond the requirements of a standard. E.g. injury data shows that standard balustrade heights on highrise buildings are often inadequate to address the risk of falls.


The WHS Act defines structure to mean “anything that is constructed, whether fixed or moveable, temporary or permanent, and includes:
a. buildings, masts, towers, framework, pipelines, transport infrastructure and underground works (shafts or tunnels);
b. any component of a structure; and
c. part of a structure”.^^

Examples also include all types of buildings, pipe work, tunnels, landscape elements, swimming pools, paths and roadways.



Want to find out more about your Safe Design obligations under legislation? Download our FREE EBOOK.

Or if you’re a building designer, architect, engineer, or other building design professional, we encourage you to enrol in our flexible and convenient ‘Safe Design Online Short Course’, designed to assist you understand and practice safe design principles and endorsed by the Safety Institute of Australia (SIA).

Need more info, contact us.

^ Safe Work Australia. (2011). Model Work Health and Safety Bill. Canberra: Safe Work Australia, p.4
* Safe Work Australia. (2012). Code of practice: Safe design of structures. Canberra: Safe Work Australia, p.5.
+ WorkCover NSW. (2011). Fact Sheet – PCBUs, Workers and Officers. Sydney: NSW Government.
# Safe Work Australia. (2012). Code of practice: Safe design of structures. Canberra: Safe Work Australia, p.5.
~ Safe Work Australia. (2011). Interpretive Guideline – model Work Health and Safety Act – the meaning of ‘Reasonably Practicable’. Canberra: Safe Work Australia.
^^ Safe Work Australia. (2011). Model Work Health and Safety Bill. Canberra: Safe Work Australia, p.7.
Safety in Design for Residential buildings

Case Study: Safety in Design for Residential Structures

Case Study: Safety in Design for Residential Structures

Safety in Design for Residential structures

This case study for safety in design for residential structures is a compilation of design planning and structure issues from several different residential building and renovation projects.

The designer was commissioned to renovate a coastal house, including the addition of a second storey, an upper storey balcony, an entry void and stair, and some internal upgrades.

Site factors considered were the presence of overhead power lines and underground gas, the instability of the slope (geotechnical report required), and the potential for acid sulphate soils (acid sulphate soils study required).
The designer identified the potential presence of asbestos, lead based paints and polychlorinated biphenyl (PCBs) in the existing structure, and organised a competent person to confirm the location of these hazardous substances. The designer and client discussed the asbestos and decided that it should all be removed as part of the new works.

As the additions included a new upper storey on top of the existing structure, the designer consulted with a structural engineer to verify the capacity of the structure to take the load of the new level and any additional support that would be required to ensure the stability of the structure. As the site was in a coastal area, the engineer investigated the existing structure to ensure that prior damage from corrosion would not affect the integrity of the structure.

During the documentation stage, the spacing of the roof trusses for the upper level was revised to 600mm centres with battens at 450mm centres to reduce the risk of falls during construction. The roof pitch was kept below the critical angle of 26 degrees at 22 degrees (see Code of Practice: Preventing Falls in Housing Construction) to improve worker safety.

To reduce exposure of the construction workers to hazardous substances, the designer specified paints and adhesives that had no volatile organic compounds (VOCs) and no emissions materials for internal joinery.

New materials were selected for durability and to reduce the need to maintain the building at heights including the use of stainless steel roof sheeting and fixings. Air conditioning units and fans were selected that were more durable for the environment. Air conditioning units were located to the rear of the residence for protection from salt spray and at ground level for easy maintenance. To increase durability and reduce the need for ongoing maintenance, the designer selected a tiled concrete slab for the rear veranda, durable composite decking made from recycled plastic for the entry deck, and stainless steel balustrading. To eliminate confined spaces, rainwater tanks were selected that did not have to be entered to be maintained.

High level windows were originally proposed over the staircase and were considered a potential hazard for maintenance. These windows were relocated over a hallway where they could be accessed for cleaning. Louvres were specified on the upper storey to allow cleaning from the inside. Wall mounted LED lighting in the void area was proposed to reduce the risk of work at height for lighting maintenance.

The designer eliminated or minimised risks—so far as was reasonably practicable—and communicated residual risks to others further down the lifecycle including the principal contractor, maintenance contractors and demolition contractor in the safety report. The designer provided the safety report to the client, who was advised to provide this to the principal contractor. This report was also issued by the designer with tender documentation and submitted with the plans to the local council.

Safe Design Workshop with project stakeholders

Safe Design Australia acted as the safe design consultant for these residential projects, providing support through consultation and workshops. Safe design workshops are important, particularly for more complex projects as they can assist the designer in identifying hazards and consulting with other duty holders on ways to eliminate or minimise risks.

Participants can include the designer, the client (sometimes the building owner), engineers, consultants, principal contractor, maintenance manager and other consultants.

Contact us to find out more

To find out more about this particular project, or how the Safe Design Australia team can assist you on your next project, contact us.


Safe Design Consultant: Safe Design Australia

Genoa Bridge Tragedy

Genoa Bridge Tragedy: Who’s responsibility is it?

The Genoa Bridge Tragedy. The question of responsibility.


The Genoa Bridge Tragedy: On 14 August 2018, a viaduct – a major motorway, constructed in the 1960s in the north of Italy, collapsed, killing 43 people. Cars, trucks and people dropped suddenly, crashing to the ground 150 metres below. Sounds surreal in this day and age. But it did happen.

Once the initial shock subsided and emergency efforts completed, the attention turned to questioning – just how did this happen?

A “cable-stayed bridge”, the design featured two pretensioned concrete cables used on both sides of the pillar.  According to an article on, the design, “subject to corrosion, it may have made the bridge, which required constant maintenance as an essential traffic hub, vulnerable to collapse.”

An engineer who worked for the company that constructed the bridge claims that the bridge’s supporting piles weren’t built with anti-seismic materials and did not have the capacity to support the weight of heavy traffic.

As reported on, the engineer that designed the bridge “warned four decades ago that it would require constant maintenance to remove rust given the effects of corrosion from sea air and pollution.”

The power of hindsight

Again, hindsight rears its ugly head with a raft of finger-pointing and mismanagement claims. Ultimately a formal investigation into the Genoa Bridge Collapse will look at a range of possible causes including materials used, wear and tear, heavy traffic, structural flaws, poor maintenance budgets and other problems. It raises an important topic for conversation and action.

The considerations for design components of structures spans well beyond the initial construction and ready for use stage. It shows the importance of understanding lifetime usage, maintenance and ease of access, the sustainability and resilience of materials to the elements, and long-term maintenance budgets.

And, ultimately asks the question. “Who’s responsibility is safe design?”


Do you know your responsibilities under safe design legislation?

For more information about the principles of safe design, responsibility for safe design, and safe design in practice, contact us.

Responsibility for Safe Design

Responsibility for Safe Design

Whose responsibility is it to ensure design safety?


Responsibility for safe design.

The biggest mistake many building design and architectural practices make is assuming they do not need to do anything in relation to their duties under work health and safety (WHS) legislation.

The reality is that designers in most states and territories throughout Australia have a legal duty to design structures, so far as is ‘reasonably practicable’, that are without risk to health and safety when they are used as, or at, a workplace.

Designers need to make sure that they are protecting themselves and their practices and the people who are going to use the buildings or structures they design. Designers need to understand their duties under legislation and what they need to do to comply with these duties.

The good news is that it is easy to comply with legislation once you have processes in place.

How can designers meet their legislative requirements?

Designers can meet their legislative requirements for work health and safety by:

  1. Reading the Code of Practice: Safe Design of Structures and other WHS codes of practice.
  2. Training staff in safe design and legislative requirements.
  3. Researching WHS Injury statistics and specific data relating to the structure being designed.
  4. Consulting with the client, workers, engineers, plant designers, specialist operators (e.g. crane operators) and the principal contractor.
  5. Implementing a safe design procedure for their company and a systematic process for identifying hazards.
  6. Designing structures to be without risk to health and safety.
  7. Facilitating safe design workshops with key stakeholders.
  8. Preparing safe design reports and other supporting documentation.
  9. Engaging a safe design specialist like Safe Design Australia, to assist them with the above where required.
  10. Having an internal WHS procedure for staff.


Flexible and convenient online training for safe design

We know safe design ‘sounds’ boring. But it doesn’t have to be. We’ve developed a flexible and convenient online training course specifically focussed on Safety in Design (SiD) for design professionals – architects, building designers, engineers and other building professionals.

The online course has been designed by international safe design expert and WHS professional, John Daly, and is endorsed by the Safety Institute of Australia (SIA). It provides the latest information, advice and tools relating to safe design practices in Australia, New Zealand and around the world.



 Contact us to find out more

To find out more about the duties of designers under safe design legislation, or how we may assist you with a Safe Design Workshop for your next design project, contact us.


Duties of designers under safe design legislation

Duties of Designers – Safe Design

Duties of Designers under Safe Design legislation


‘Safe design’ of structures involves designers preventing potential injuries by
considering safety throughout the design process.

Analysis of fatal accidents on building sites show that many are due to shortcomings in design as well as organisational problems. So what are the duties of designers during the design process to ensure they meet safety in design requirements?

In the early stages of a project, there is greater scope to remove foreseeable hazards through design. Prevention is the most effective and affordable way to improve the safety of workers and requires the least effort compared with making changes at later stages.

Duties of designers as ‘upstream duty holders’

Designers of structures are known as ‘upstream duty holders’ and make decisions every day, as part of their expertise, which affect the safety of the people who work on, or in, these structures further ‘downstream’ in the structure’s lifecycle.

These include people who construct the structure, who use the structure for the purpose for which it is designed, who maintain the structure, or who demolish the structure at the end of its life. It also includes the safety of people in the vicinity of the structure. That’s a lot to think about!

Concerns about safe design legislation

So, just what are designers concerns about safe design legislation, and are they justified?

An online poll conducted by Safe Design Australia^ showed, alarmingly, up to 44.5% of those surveyed had a lack of knowledge about the legislation, with a further 31.5% having a fear of prosecution under the legislation. 19% of those polled felt that it restricted their creativity, and only 5% had no concerns.

Understanding WHS obligations and legislation

Knowledge of safe design is relatively low industry-wide. The majority of designers have no formal education in this area. And, research has shown that while designers of structures may be aware of safe design legislation, very few can nominate their specific obligations under the legislation.

It is important that designers understand safe design legislation and how to incorporate safe design into their standard design process.

Learning and understanding the current legislative requirements is the best way to overcome any concerns about safety in design.

Why is safe design important?

It is important to remember that the intent of the legislation is to improve the safety of workplaces, not to prosecute designers. Designers can protect themselves by discharging their legislative duties and by designing structures to eliminate or minimise risks to health and safety.

Designers have the opportunity to make a difference to the health and safety of workers and end users of structures through safe design. By approaching safe design with innovation and creativity, designers can create safer workplaces without compromising the integrity of their designs.

Benefits of safe design*

There are a number of benefits to safe design including:

  • preventing injury and illness,
  • improving usability of structures,
  • improving productivity,
  • reducing production and operational costs, and
  • encouraging innovation.

And, most importantly, saving people’s lives!

How can designers learn about their safe design obligations?

Let’s be honest – no one gets excited about safety. But what if it wasn’t boring? The team from Safe Design Australia have developed a flexible and convenient online training course specifically focussed on Safety in Design (SiD) for design professionals

The online course has been designed by international safe design expert and WHS professional, John Daly, and provides the latest information, advice and tools relating to safe design practices in Australia, New Zealand and around the world. It’s easy to access and can support your Continuing Professional Development.

The Not Boring Safe Design Course

 Contact us to find out more

To find out more about the duties of designers under safe design legislation, or how we may assist you with a Safe Design Workshop for your next design project, contact us.

* Safe Work Australia. (2012). Code of practice: Safe design of structures, Canberra: Safe Work Australia, p4.
^2012-2013 online polls conducted by Safe Design Australia of over 300 architects and building designers on their concerns about the harmonised legislation.
Safe design. Marshall Hotel, Taiwan earthquake.

Safe design. The benefit of hindsight.

The benefit of hindsight. Changing outcomes for the future.

Safe design. The benefit of hindsight…

In February this year, a 6.4 magnitude earthquake hit regions of Taiwan. The image of a propped up Marshall Hotel in Huelin did the rounds on social media.

Many thought this image was comical (particularly without background of what happened) and sadly, many people lost their lives that day.

Earthquakes can’t be avoided. Every environment, region or structure, however, has its own unique circumstances or considerations, and regardless of whether it’s manmade or natural, risks can be minimised or in many cases, eliminated.

How could the application of safe design practice changed this outcome?

Consultation and collaboration with specialists to consider Safe Design throughout all phases of the design, construction and usage stages of a structure are important to ensure we continually innovate and improve, while also preventing and minimising injury through the design of safe structures and workplaces.

Emergency workers went to alarming lengths in this instance. And, we don’t have the complete view of the design, development and construction lifecycle for this project. But, do you think the outcome could have been any different in this situation?

Read more: 


Find out more about safe design practice

For more information about the principles of safe design and how safe design can be integrated into your future building design projects, contact us.


What is ‘Safe Design’?

What is Safe Design?

Safe Design‘ is the process of integrating key construction and mitigation factors into the early stages of the design process of a structure. It can also be known as ‘Safety in Design’.

Safe Design is the integration of hazard identification, risk assessment, and control methods early in the design process of a structure to eliminate or minimise risks to health and safety throughout the structure’s construction and lifecycle.

Designers can make informed design decisions to eliminate or minimise potential risks to health and safety by identifying potential work health and safety hazards early in the design process. And, this can have positive outcomes for all stages of the design and construction process.

Identifying hazards throughout the lifecycle

Designers should consider the safety of people throughout the lifecycle of the structure, including the construction stage as well as when it is used as a workplace. This includes systematically identifying potential hazards during the main lifecycle phases:

  • construction (including civil works stage and demolition of any existing structures);
  • usage (the purpose for which the structure is designed);
  • maintenance, cleaning or repair; and
  • demolition at end of life or for adaptive reuse.


Consultation is an important factor in safe design. Consultation of specialists and key contributors throughout each phase of construction can help influence and improve the safety of a design by understanding the proposed use of the structure and work processes. It may include:

  • undertaking research;
  • testing and analysis;
  • selection of safer materials;
  • knowledge of methods of construction;
  • understanding maintenance requirements;
  • identification of potential demolition needs;
  • consultation with others; and
  • applying solutions from recognised standards.

Information should be communicated to those further along in the lifecycle of the structure to inform overall safe design outcomes.

Designing for safety and design intent

Good design is important and we believe that safe design can be achieved without compromising design intent. Safe design doesn’t have to be boring! Applying a process of safe design throughout each phase of design and development of structures can lead to innovation, use of new technologies and materials, and new methods of doing things. It doesn’t need to be a roadblock to design integrity.

Our team of work health and safety consultants and risk managers operate throughout Australia and New Zealand to help designers meet their work health and safety legal duties in relation to safe design.

We have a range of resources available to assist organisations apply Safe Design principles and practices. For more information on WHS regulations and legislation, programs, tools and resources to support you and your team, contact us today.